Home    Resource Store    Past Issues    Buyers' Guide    Career Center    Subscriptions    Advertising    E-Newsletter    Contact

http://www.schlafhorst.saurer.com
http://www.textileservicesonline.com
http://ahweb.adsale.com.hk/t.aspx?unt=2396-ZhejiangTex14_TextileWorld
http://www.expoproduccion.mx/Content/Exhibitors/24/
http://ahweb.adsale.com.hk/t.aspx?unt=2354-STX15_TextileWorld
http://www.textileworld.com/careers/index.html
http://www.textileworld.com/forms/mediakit.html
http://www.textileworld.com/Store/Books/diccionario-textil.html
September/October 2014 Sept/Oct 2014

View Issue  |

Subscribe Now  |

Events

10th International Conference on Geosynthetics
09/21/2014 - 09/25/2014
01/31/2014 - 01/31/2014

Outlook™ 2014
09/24/2014 - 09/26/2014

Cinte Techtextil China
09/24/2014 - 09/26/2014

- more events -

- submit your event -

Printer Friendly
Full Site
Textile News

NC State Researchers Develop Technique To Scale Up Nanofiber Production

Researchers at North Carolina State University (NC State) have developed a nanofiber production technique that can significantly increase output compared with traditional needle electrospinning (TNE) and allow industrial-scale production of nanofibers comparable in quality to those formed using TNE.

The research team includes Dr. Russell E. Gorga, associate professor, Textile Engineering, Chemistry and Science, and program director of Textile Engineering; Dr. Laura I. Clarke, associate professor, Physics; Dr. Jason Bochinski, research assistant professor, Physics; and Nagarajan Thoppey Muthuraman, graduate research assistant. The team reported its findings in a paper titled "Edge electrospinning for high throughput production of quality nanofibers," published in the journal "Nanotechnology."

Nanofibers can be integrated in nonwoven fabrics used in filtration, energy storage, tissue regeneration and other applications. TNE creates high-quality, relatively inexpensive nanofibers, but the process is time-intensive and not very efficient. More efficient technologies are available, but Gorga said there have been limitations, including inconsistent nanofiber diameters, associated with various methods.

"We have been trying to come up with a process that is not sensitive to the type of solvent or polymer system used," Gorga said. In experiments conducted using equipment designed and fabricated in-house, the team worked with two polymer types that had different viscosities and solvent volatility.

The technique involves electrospinning from the edge of a bowl filled with a polymer solution whose surface is hit with a short, high-voltage burst that causes simultaneous formation of jets that migrate to approximately equidistant positions on the bowl's edge and spin nanofibers onto a cylindrical collector surrounding the bowl. The technique produced 40 times the number of nanofibers produced using TNE and showed potential for even higher output.

Nanofibers produced ranged from 100 to 200 nanometers (nm) in diameter, and Gorga said the process can be tuned to produce a specified diameter. "One caveat of high-throughput technologies is that some of the data show they're not really producing submicron-diameter fibers. We don't want to compromise the diameter because there's a push to go even smaller - to 50 nm or even 10 nm."

The project received funding from the National Science Foundation and NC State's Faculty Research and Professional Development Fund.

September/October 2011

Advertisement

http://www.staubli.us