Home    Resource Store    Past Issues    Buyers' Guide    Career Center    Subscriptions    Advertising    E-Newsletter    Contact

http://www.allstatestextile.com
http://bit.ly/QryKcX
http://www.itmaasia.com
http://www.spgprints.com
http://www.textileworld.com/forms/mediakit.html
http://www.textileworld.com/forms/newsletter.html
http://www.textileworld.com/Store/Books/diccionario-textil.html
http://www.textileworld.com/careers/index.html
More Quality Fabric Of The Month

Spectral At The Core
March 17, 2014

Lofty Performance
February 17, 2014

Smart Design: A Win-Win For All
December 15, 2013

Waxing Ecological
October 14, 2013

A Sea Change For Microfibers
September 16, 2013

March/April 2014 March/April 2014

View Issue  |

Subscribe Now  |

Events

Understanding The U.S. Government Lists Of Products Believed To Be Made With Forced Or Child Labor webinar
04/22/2014 - 04/22/2014

12th International Exhibition on Textile Industry (Indo Intertex 2014)
04/23/2014 - 04/26/2014

Smart Fabrics & Wearable Technology 2014
04/23/2014 - 04/25/2014

- more events -

- submit your event -

Printer Friendly
Full Site
Quality Fabric Of The Month

Spider Silk: Potential Unleashed

Spider silk technologies developed at the University of Notre Dame jointly with Kraig Biocraft Laboratories and the University of Wyoming are heading toward commercial availability.

Janet Bealer Rodie, Managing Editor

Spider silk has been the subject of advanced research and development efforts for years because it has exceptional strength, elasticity and abrasion resistance, as well as numerous potential technical textile applications — if only it could be produced in commercially viable quantities. That's been a problem because spiders are not exactly social creatures and, in fact, tend to be cannibalistic, so farming them as one would silkworms is not an option. However, a breakthrough has occurred thanks to collaboration involving the University of Notre Dame, Notre Dame, Ind.; Kraig Biocraft Laboratories Inc. (Kraig Labs), Lansing, Mich.; and the University of Wyoming, Laramie, Wyo.; and the first result — a hybrid silk produced by transgenic silkworms — is well on its way to commercialization primarily for traditional silk applications including apparel and medical applications such as sutures.

QFOMspidersilk

Armed with an exclusive license to use patented technologies developed by Randolph Lewis at the University of Wyoming, Kraig Labs Founder and CEO Kim Thompson began working with Malcolm Fraser at Notre Dame, developer of piggyBac gene-splicing technology, and Donald Jarvis at the University of Wyoming. PiggyBac vectors have been used to combine certain spider silk proteins with silkworm proteins to create a transgenic silkworm that produces a composite silk that, while it comprises only about 5-percent spider silk protein, exhibits significantly increased strength and elasticity when compared to conventional silk. This hybrid silk is called Monster Silk, "a beautiful product," Thompson said, that has an entirely different hue and sheen than traditional silk. "The percentage of spider silk proteins in the fiber is not indicative of the fiber's strength," he said. "Those proteins are acting sort of like rebar in concrete, to create a reinforced fiber."

Monster Silk can be produced in commercially viable volumes, and Kraig Labs, which has signed a commercialization agreement with Notre Dame, is exploring the possibility of acquiring an end-product manufacturer working in its target market.

A Generation II 100-percent recombinant spider silk for technical textile applications is in advanced stages of development and soon is expected to be ready for commercialization. This fiber, developed using St. Louis-based Sigma-Aldrich Corp.'s zinc finger gene-splicing technology, would have advanced medical, composite and possibly ballistic applications, among others — spider silk is said to be stronger than aramid and 10 times as strong as steel. "I would like to see testing data before we make ballistic claims," Thompson said, "but there is discussion in the scientific literature that this material would be like a miracle product for ballistic resistance. I imagine it would be used in a composite product to reinforce, for example, ultra-high molecular weight polyethylene."

A customizable Generation III fiber that can include various mechanical and chemical properties is also in development.



For more information about Kraig Labs' recombinant spider silk technologies, contact Kim Thompson +517-336-0807; kraiglabs.com.



January/February 2012

Advertisement

http://www.staubli.us